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EXECUTIVE SUMMARY 

Within the iDesignRES project, multiple component models were developed and publicly released in D1.2 
Multi-physics component models [1]1. While the majority of the individual component models can run as 
stand-alone models, it is especially beneficial to assemble the individual component models into a unified 
framework to perform analyses with multiple energy carriers. This is achieved through the so-called Sys-
tem assembling tool consisting of several developed Julia packages for the energy system modelling 
framework EnergyModelsX (EMX) corresponding to deliverable D2.2. 

This report accompanies and supplements the deliverable D2.2. The deliverable consists of Julia packages 
extending EMX with features for sampling of component models written in other languages and solving 
the resulting optimization problem within a receding horizon framework. The detailed documentation of 
the different packages can be found in the respective repositories. The packages include examples on 
their application, a description on how to use the packages, as well as an overview of the API and exten-
sion approaches for other EMX packages. This companion report provides a high-level overview of the 
implemented features and their application. 

Even if it is expected that the receding horizon framework reduces the computational burden of solving 
complex multi-physics problem through solving sequentially smaller optimization problems (we plan to 
utilize within iDesignRES problems which are 26 times smaller than the full problem), additional algorith-
mic methods can reduce the computational time even further. This is especially relevant for complex 
multi-physics operational analysis with high geographical, high temporal and high technical resolution. 
Different approaches to reduce the computational burden of model construction and model solving as 
well as an overview of the potential application of quantum computing for solving complex energy system 
optimization problems are hence presented in the companion report. Specifically, through modifying the 
system-assembling tool, it is possible to reduce the computational burden by 60 %. Bender’s decomposi-
tion is another presented method resulting in a reduction in the computational burden by up to 85 %. 

  

 
1 The individual Multiphysics component models are available on https://github.com/iDesignRES. 

https://github.com/iDesignRES
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1. Introduction 

Analysing and operational stress testing of integrated energy systems at a high geographical resolution 
requires both detailed models for individual technologies or sectors (for an accurate representation of 
the dynamic behaviour) and measures to reduce the computational burden of the resulting optimization 
problem (due to the complexity of the individual dynamics). 

Within the iDesignRES project, detailed multiple multi-physics component models were developed within 
Work Package 1. The individual models are released as Deliverable D1.2 [1] with the companion report 
providing an overview of the individual models and their features. The models are developed as stand-
alone models in different programming languages. However, there exist couplings between the individual 
models and the modelled energy carriers. As an example, consider the solar PV model which can provide 
the user with a production profile within a geographical region for a given capacity through optimally 
investing in the available land. As electricity is also required as input for electrolysis or natural gas reform-
ing with CO2 capture models, it must be included in a unified multi energy carrier model to avoid incon-
sistencies in the analyses. The individual component models are hence unified within an assembly tool, 
either through direct integration or through sampling of the multi physics component model to provide 
improved input data. 

As outlined above, solving such a large-scale optimization problem with a high geographical and technical 
resolution and varying annual profiles is in general infeasible due to the high computational burden. 
Hence, the unified framework utilizes a receding (rolling) horizon framework in which the overall optimi-
zation problem is split into a set of sequential horizons, each corresponding to an individual optimization 
problem. This results in more tractable problems in which, e.g., the initial conditions of horizon 2 is pro-
vided by horizon 1. 

This companion report to deliverable D2.2 provides an overview of the individual developed packages, 
their features, and how to apply them. The main deliverable corresponds to two developed packages for 
the EnergyModelsX (EMX) [2] framework which are openly available on GitHub2 under the MIT license. 
EMX is a multi-nodal, multi-carrier energy system modelling framework written in Julia, based on the 
JuMP [3] algebraic modelling language. The developed packages provide additional functionality to EMX. 
Section 2 introduces the package EnergyModelsInterfaces which provides functionality for interfacing 
C++ and Python models with Julia. Section 3 introduces the concepts behind the package EnergyMod-
elsRecedingHorizon which adds support for a receding horizon framework on top of existing EMX models. 
Sections 4 and 0 introduce both features for reducing the computational time for model construction and 
solving the model.  

 
2 Available on https://github.com/EnergyModelsX. 

https://github.com/EnergyModelsX
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2. Linking and sampling the component models 

2.1 Concept 

The concept of linking and sampling the component models revolves around creating a cohesive frame-
work that integrates various multi-physics models developed in WP1. This framework aims to facilitate 
the modular assembly of these models, ensuring seamless interaction and data exchange between them. 
The ultimate goal is to provide a multi-carrier operational model with NUTS Level 2 resolution, capable 
of stress testing the energy system under extreme conditions. 

The EnergyModelsX framework will be used as the core of the system-assembling tool as it provides great 
flexibility in including new structures to be integrated. Moreover, it is openly available and is written in 
the open programming language Julia that facilitates packages that can easily be used to connect to other 
packages written in other programming languages. 

2.2 Implemented features 

The system-assembling tool3 integrates various multi-physics component models (developed in delivera-
ble D1.2), including: 

• Building demand module [4], written in Python (based on REST API). 

• Industrial demand module [5], written in Python. 

• Transport demand module [6], written in Julia. 

• Packages in the EMX framework, written in Julia 
o Renewable energy technologies [7] (EnergyModelsRenewableProducers) 
o Hydrogen technologies [8] (EnergyModelsHydrogen) 
o CO2 infrastructure [9] (EnergyModelsCO2) 
o Thermal energy infrastructure [10] (EnergyModelsHeat) 
o Transmission infrastructure [11] (EnergyModelsGeography) 

• Nuclear module, written in C++ (part of the SMS++ [12] framework) 

• Combined Heat and Power Module [13], written in C++ (part of EnergyModelsHeat) 

• Solar PV module [4], written in Python (based on REST API). 

• Wind power production module [14], written in Python 

Emphasis is placed on developing generic sampling routines to facilitate the incorporation of new com-
ponents. A sampling routine is a specially tailored function used to incorporate new components into the 
system-assembling tool by evaluating the component with its required input parameters and using the 
required output of the component in the system-assembling tool. The sampling routine can consider any 
set of arguments or keyword arguments for a Python function and any number of arguments for a C++ 
function. 

The models that are written in C++ and should be sampled expose a function through the CxxWrap pack-
age [15]. The integration of components written in Python are achieved using PyCall [16] in Julia to eval-
uate Python projects installed in a conda [17] environment using, e.g., Poetry [18]. All modules in EMX 
are integrated directly and have no need for sampling. 

For the routine calling Python functions, it is assumed that the current activated Python environment 
contains the Python module to be sampled. The call_python_function routine then takes the 
Python module name and the name of the function to be sampled in addition to its arguments as input 
arguments (or keyword arguments). 

 
3 The system-assembling tool is available on https://github.com/EnergyModelsX/EnergyModelsRecedingHorizon.jl. 

https://github.com/EnergyModelsX/EnergyModelsRecedingHorizon.jl
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For the routine calling C++ functions, slightly more manual work is needed as it is required from CxxWrap 
that the C++ code is altered to expose the function to be sampled. The manual approach needed for this 
package is described in the next section. 

For each component, a new EMX element is implemented for simple integration. Constructors of these 
new nodes are then implemented to sample the above components with the aforementioned approach. 

2.3 How to use the sampling functionality 

As mentioned, all modules not implemented directly in the EMX framework must be sampled, as direct 
integration is not possible. First one must provide an internal function in the Python or C++ model which 
is externally callable, then one must call said function from an internal constructor in EMX for a node 
description. The node can utilize existing nodal descriptions or provide new additional information if the 
original function provides a non-linear output. 

For models written in C++, to expose the function to be sampled, one needs to install libcxxwrap-julia 
[19] and wrap the sampling function into a JLXX_MODULE as described in the documentation of CxxWrap. 
Once this code is compiled into a shared library it can be used in Julia by exposing the function in a sepa-
rate Julia module. The EMX constructor mentioned above can then evaluate the sampling function 
through this module. 

The current implementation is limited to single function evaluations in Python or C++. It is as of now not 
possible to provide an improved common format due to the large specialization of the individual compo-
nent models. Consequently, it is not possible to develop a fully unified approach for automatically creat-
ing EMX nodes as the internal mathematical description is dependent on the sampled data. 
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3. Receding horizon framework for operational stress testing 

3.1 Concept 

Receding horizon is a concept coming from the control systems community, widely used in model predic-
tive control (MPC) [20]. It refers to a method for solving dynamic optimisation problems in real time, such 
that current measurements and future predictions of relevant parameters are updated in time. In control 
problems, this is used based on the insight that information about the distant future has little impact on 
short-term operation. The concept of receding horizon also finds application in energy systems modelling, 
especially when short-term dispatch decisions are affected by uncertainties [21]. In dynamic optimisation 
problems, these uncertainties can be represented by operational scenarios that must be optimised sim-
ultaneously, see Figure 1. This substantially increases the complexity of the optimisation problem. 

 

Figure 1: Example of receding horizon optimization for uncertain energy systems (adapted from [21], published 
under the CC BY-NC-ND 4.0 license). 

In this work, the receding horizon concept is used to decompose a large-scale optimisation problem into 
smaller problems with limited time horizons. This means that previously intractable problems, due to 
large time horizons and number of system elements, can now be solved with higher computational effi-
ciency, which will in turn facilitate stress testing of operational scenarios. This approach still allows for 
modelling the system operational dynamics in the fast time scales, while retaining information about the 
system behaviour in the longer time scales. 

3.2 Package description 

The receding horizon optimisation scheme is implemented as a package for the EMX framework. The 
developed package4 introduces the required functionalities for solving optimisation problems in a reced-
ing horizon scheme, and it uses the EMX functionalities for description of technologies and resources. As 
such, systems defined within EMX are easily adaptable to solve in the receding horizon package. The 
released version of the package is compatible with the node, link, area, and transmission types introduced 
in EnergyModelsBase and EnergyModelsGeography, which correspond to core energy system functional-
ities and geographical descriptions, respectively. 

The main implemented functionalities for the receding horizon optimisation package are described be-
low. 

 
4 Available on https://github.com/EnergyModelsX/EnergyModelsRecedingHorizon.jl. 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/EnergyModelsX/EnergyModelsRecedingHorizon.jl
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3.3 Implemented features 

3.3.1 Horizon update functionality 

The receding horizon framework is based on time decomposition of the full-scale optimisation problem. 
Each subproblem is solved over a finite time horizon, which we denote as optimisation horizon. The so-
lution for this subproblem is stored for a usually smaller time horizon, which we denote as implementa-
tion horizon, and the next subproblem is posed to begin at the end of this implementation horizon. This 
approach is similar to MPC in which only the results of the first time step is implemented while the next 
iteration of the optimization problem receives feedback from the controlled process. In our case, we do 
not receive feedback from the process but instead have more knowledge regarding the future energy 
demands or generation profiles in subsequent iterations. 

The implementation and optimisation horizons can be defined in different ways. To understand that, note 
that a dynamic problem can be posed with operational periods that have varying durations: 

 

Figure 2: Example of time structure for a dynamic problem. 

Using different durations for the individual operational periods allows for reducing the temporal resolu-
tion in periods in which both renewable power generation and demand profiles do not vary significantly, 
e.g., the night, while maintaining a high temporal resolution in the other periods. Consequently, the num-
ber of operational periods can be reduced. 

In the developed framework, there is support for two types of horizon structures: 

• Period horizons: the length of the implementation and optimisation horizons is governed by the 
number of operational periods in the horizon as shown in Figure 3. As a consequence, it is possi-
ble that the total duration of the implementation and optimisation horizons can vary for each 
iteration. 

In Figure 3, we specify an implementation horizon of 2 periods and an optimisation horizon of 5 
periods. In the first iteration, the total duration of the implementation horizon is 3 while the total 
duration of the optimisation horizon is 9. The second iteration changes this to 4.5 and 11, respec-
tively. This is especially pronounced for short horizons and large variations in the duration of the 
individual periods. 

• Duration horizons: the length of the implementation and optimisation horizons is governed by 
their total duration as shown in Figure 4. As a consequence, we can have a different number of 
operational periods in the individual iterations. Note that we specified the horizons so that the 
total duration of both implementation and optimization horizon must be at least the specified 
value. This implies that it can be larger, if the total duration would end within an operational 
period. 

In Figure 4, we specify an implementation horizon of 3 time units and an optimisation horizon of 
8 time units. Similarly to the case of period horizons, it is possible that the effective horizon to be 
analysed is larger than the specified ones, here due to the calculation horizons needing to contain 
whole operational periods. For the first iteration, the optimisation horizon corresponds to 5 op-
erational periods, whose duration sums up to 9 time units, and the implementation horizon cor-
responds to 2 operational periods, with duration of 3 time units. For the second iteration, which 
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starts from the third operational period, the optimisation horizon corresponds to 4 operational 
periods, and the implementation horizon corresponds to a single operational period. 

 

Figure 3: Example of problem update based on period horizons (implementation horizon of 2 periods, optimisation 
horizon of 5 periods). 

 

Figure 4: Example of problem update based on duration horizons (implementation horizon of 3 time units, 
optimisation horizon of 8 time units). 

The two types of horizons can be exchanged by the user at will. The package will automatically adjust the 
chosen time periods in each iteration as well as which periods are saved in the results file. 

3.3.2 Support for flexible system initialisation 

The developed framework allows for explicitly defining the initial states of a system or subsystem. This is 
especially relevant for dynamic systems, where a state depends on the previous operation. This function-
ality is crucial within the receding horizon framework to continuously solve slices in time of the full opti-
misation problem. 
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In the receding horizon framework, an initialisation setting is generated for every optimisation problem 
solution, corresponding to the state of the system at the end of the implementation horizon. This will be 
the starting condition of the next optimisation problem, and it is consistent with the solution of a large-
scale optimisation problem. 

In the developed package, the user is provided with a toolkit that works for most dynamic systems, where 
the system’s state is a given time can be completely determined by knowing the state of the system at 
the immediately previous time period. While this is the case for systems such as storages, this may not 
apply for systems with unit commitment, such as minimum up- or down-time. For these cases, the pack-
age can be easily extended to deal with more complex initialisation settings through the incorporation of 
new initial data types. 

3.3.3 Future value descriptions 

As explained above, the receding horizon framework optimizes multiple sequential horizons, where the 
outgoing state of the previous implementation horizon is used as the initial state of the next optimisation 
problem. The receding horizon approach can be useful to break down a complex optimisation problem 
into multiple smaller ones. However, the value of the outgoing state at the end of each individual opti-
mization problem should also be accounted for in the case of dynamic states, that is states which are 
dependent on their value in the previous period(s). Modelling large-scale storages requires providing a 
value to the stored energy/mass at the end of the optimization horizon. If a value is not include, the 
receding horizon solution will tend to empty the storage entirely at the end of each optimisation horizon, 
the optimal behaviour within the optimization horizon, while this behaviour may not be optimal in the 
full problem. 

To that end, we implement storage end values into the receding horizon calculations. These introduce an 
additional cost to the receding horizon optimisation problem, based on the expected future value of the 
storages. The reader is referred to Aaslid et al. [22] for a more detailed explanation of the storage end 
value concept. A summarized description is given below. 

Introduce ℓ∞ as the future value of storages in a system. This value is constrained by multiple linear 
cutting hyperplanes according to: 

ℓ∞[𝑣] + ∑ 𝑐𝑠

(𝑠,𝑐𝑠) ∈ 𝒞

× ℓ[𝑠, 𝑡𝑒𝑛𝑑]  ≤ 𝑟ℎ𝑠[𝒞]  ∀𝒞 ∈ 𝒞𝑣 , 𝑣 ∈ 𝒱 

Here, 𝒱 represents the set of storage value cuts 𝑣, and 𝒞𝑣 represents the set of cuts in 𝑣. Each cut 𝒞 in 
𝒞𝑣 presents a set of coefficients 𝑐𝑠 associated with a storage element 𝑠 and their corresponding final 
value at the considered horizon ℓ[𝑠, 𝑡𝑒𝑛𝑑], and a right-hand-side parameter 𝑟ℎ𝑠[𝒞]. 

The penalty added to the optimisation problem is: 

∑ 𝑤𝑣

𝑣 ∈ 𝒱

× w𝑣
t × ℓ∞[𝑣]  

Here, 𝑤𝑣 is a constant weight related to the set of storage value cuts 𝑣, and w𝑣
t  is a time-dependent 

weight, updated for each optimisation problem to be a linear combination of the active sets of cuts, if 
multiple sets of cuts are active. 

3.3.4 Support for geographical descriptions 

To describe large-scale energy systems, it is important to describe the different geographic areas with 
the individual energy systems, as well as the interconnections between these areas. This was done 
through developing compatibility with the existing sister package EnergyModelsGeography, which has 
the required functionalities for describing these types of problems. This means that it is also possible to 
solve problems with such complexity within the receding horizon framework. 



 

12 

3.4 How to use the package 

The main points to address when adapting an existing EMX model definition to the current package are 
related to defining the settings of the new functionalities. This includes the 

• definition of the horizon structure for the problem, 

• initialisation settings for each system node and how these are used in the model, and 

• definition of the future value formulation for the applicable nodes. 

We illustrate how to address these points through the examples provided with the package. Note that 
you must provide the profiles of the complete time horizon for the individual technologies, that is the 
profiles spanning the complete horizon, typically a year of analysis. 

Contrary to other EMX packages, the current package does not solve a single optimisation problem, but 
a sequence of optimisation problems. As such, even though all subproblems are implemented in JuMP 
[3], running a model in this package does not return a list of the solved models. It instead returns the 
overall results in a DataFrame [23] format, containing results related to the respective implementation 
horizons. 

The package is implemented with the focus on calculating supply-demand balances for systems in an 
operational time scale to identify potential problems with the invested capacities from capacity expan-
sion models. It does not support investment analysis. In addition, the calculation of operational costs for 
full periods is not implemented, although these can be calculated with the existing information through 
the store values of the variables. This will be implemented in future releases.  
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4. Algorithmic approaches for improving computational speed 

As noted before, the iDesignRES project aims to have advanced computational technologies to enhance 
energy system modeling capabilities. The project will implement a cloud-hub platform (WP4 and WP5) to 
enable direct online execution of some energy system models with the aim to significantly improve com-
putational performance through cloud services and supercomputing resources. This infrastructure facili-
tates more efficient software testing, version control, and accessibility for average users. The platform 
supports high spatial-temporal resolution modelling (sub-hourly at NUTS level 2 regions) while maintain-
ing detailed energy system physics and modular model assembly capabilities. Within the work carried out 
in Task 2.2, we developed or improved methods and algorithms to reduce the computational time in 
executing energy system models. This chapter details these results while chapter 5 outlines exploring 
new frontiers in computational paradigms by applying energy system models in quantum computers.  

4.1 Improved construction of models 

As outlined previously, the EnergyModelsX framework, based on the Julia algebraic modelling language 
JuMP, is utilized for the implementation of the receding horizon framework. The EMX framework utilizes 
immutable types for providing the parameters to the optimization problem to avoid issues with uninten-
tional overriding of parameters within the programme. Similarly, the individual parameters in the opti-
mization problem are directly included in the JuMP problem. 

However, in the case of a receding horizon framework, we must update temporal profiles, initialization 
data, and other parameters of the optimization problem within each iteration of the problem as demand 
and generation profiles as well as initial data change. While the updates can be achieved through recre-
ating the case and optimization problem, it can be computationally costly to recreate both in each itera-
tion. Consequently, new approaches must be developed for updating both the case description and the 
optimization problem. These new approaches must be flexible enough to be extended to new parameters 
that must be changed in the different iterations. 

The actual improvement in computation speed is depending on the complexity of the optimization prob-
lem. If the optimization problem is in general hard to solve due to the inclusion of binary variables and 
unit commitment constraints (e.g., requiring a minimum operational point or alternatively a minimum 
time for startup or shutdown), the improvement may be small as solving the optimization problem can 
take significantly longer than building the optimization problem. 

4.1.1 Lenses for resetting values of immutable types 

The developed package utilizes the Julia package Accessors for changing the values of the individual pa-
rameters of the technology elements. This package provides so-called lenses which point towards the 
position of a given parameter within the immutable type. The lenses can be used to both access and reset 
the values of immutable types by creating a new version of the original type at an increased speed. Tests 
showed that changing the values of parameters through lenses increases the updating of model param-
eters by 10-20 %, depending on the number of parameters to be updated. 

Lenses are incorporated into the model through a new case type which provides a comprehensive over-
view of the different parameters that must be updated in each iteration of the receding horizon frame-
work as well as the original and updates elements. Most of the required functionality for solving a reced-
ing horizon model is directly included in the package while unforeseen functionality can be implemented 
in a simple way as outlined in the package’s documentation. 

4.1.2 Declaring parameters as variables 

While the inclusion of lenses significantly improves updating the EMX case, it is still necessary to create 
a new JuMP optimization problem in each iteration of the receding horizon framework, even if only a 
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limited number of parameters is updated. This can be circumvented through the utilization of the Julia 
package ParametricOptInterface (POI) which is an extension to JuMP. With POI, parameters can be in-
cluded in the optimization problem as variables with a fixed value. The value of the variables can be 
updated in each iteration. While this approach is feasible in all algebraic modelling languages, it would 
lead in most cases to quadratically constrained optimization problems due to the multiplication of varia-
bles, and hence, bilinear terms. POI treats the parameter variables differently, and hence, the implemen-
tation results in a linear problem when parameters are multiplied with variables. The application of POI 
can improve the computational speed significantly. In the case of a simple model in which 50 iterations 
are run (corresponding to a full year with an implementation horizon of 1 week), the receding horizon 
problem is solved in 40 % utilizing POI compared to the required time when not using POI. 

POI is included as an extension to the receding horizon framework. This implies that the user can decide 
to use it in each individual model run. It utilizes the same case type as outlined in Section 4.1.1 for lenses 
and what new values should be used for the parameters. It can only be used with horizons based on the 
number of periods as the optimization problem would change when the number of periods changes (see 
also Section 3.3.1 for an explanation on horizon types). In addition, it is necessary that the duration of 
the individual periods is the same in each optimization horizon. It is still possible to have varying durations 
for the individual periods, but the durations must be repeating over the optimization subproblems.  

4.2 Solution methods for improving computational speed 

4.2.1 Introduction 

Managing multi-timescale uncertainty is crucial for infrastructure planning, especially in long-term energy 
system planning, which plays a key role in achieving net-zero energy transition. Uncertainties in energy 
planning span multiple timescales, typically including long-term (years/decades) and short-term (hourly 
or sub-hourly) uncertainties [24], [25]. Tactical timescales, involving seasonal storage, have also been 
investigated for systems with significant seasonal storage [26]. 

A widely used approach for managing multi-timescale uncertainty is Multi-Horizon Stochastic Program-
ming (MHSP)[24], a type of multi-stage stochastic programming with block separable recourse[27]. MHSP 
reduces problem size by partially disconnecting short-term and long-term decision nodes. Despite this, 
MHSP problems remain computationally challenging, requiring efficient decomposition algorithms. 

To address computational difficulties, various decomposition algorithms have been proposed [28], [29], 
[30], [31]. Benders decomposition and Lagrangean decomposition have been used to decompose MHSP, 
and progressive hedging has been explored as a solution method. Stabilized Benders decomposition [29], 
[30], with adaptive oracles, was introduced to improve efficiency in large-scale problems. This method 
avoids solving all subproblems in every iteration, reducing computational effort while maintaining accu-
racy. 

This report summarizes the findings of a separate publication on different improved formulations of 
Benders decomposition. The study extends the literature by utilizing parallel computing for Benders de-
composition in MHSP. Stabilization techniques, such as centered point stabilization, address oscillation 
issues in highly degenerate models, which are common in multi-region energy system planning. Recent 
research has shown that stabilization significantly improves computational performance. 

While previous work has focused on computational methods, the impact of multi-timescale uncertainty 
on planning decisions remains underexplored. The study provides a comprehensive analysis of how short-
term and long-term uncertainties influence energy system planning. Using the Renewable Resource In-
vestment for the Energy Transition (REORIENT) model and the proposed solution algorithm to an inte-
grated European energy system planning problem under uncertainty [32], the study shows that the par-
allel stabilized Benders decomposition method is up to 7.5 times faster than the serial version. 
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4.2.2 Parallel stabilized Benders decomposition 

Parallel Stabilized Benders Decomposition is a method to improve the computational efficiency of solving 
large-scale stochastic programming problems with multi-timescale uncertainty. Traditional Benders de-
composition, widely used for such problems, breaks them down into a master problem (MP), which de-
termines high-level strategic decisions, and multiple subproblems (SPs), which handle operational deci-
sions under uncertainty. However, when applied to energy system planning, this method becomes com-
putationally expensive due to the large number of decision nodes and the high-dimensional solution 
space. 

To address this challenge, the study presents a parallelized version of Benders decomposition. Instead of 
solving subproblems sequentially, they are distributed across multiple processors, allowing them to be 
solved simultaneously. Once all subproblems are solved, their solutions are aggregated and used to up-
date the master problem. This synchronous execution significantly reduces computation time. A centered 
point stabilization technique [30] is employed to mitigate oscillation issues that often arise in Benders 
decomposition when applied to highly degenerate models, such as multi-region energy systems. 

Parallelization is implemented in two ways. First, multi-threading distributes workloads across multiple 
cores within a single computer. Second, multiprocessing allows subproblems to be solved on separate 
machines connected via a network. The hybrid parallelization approach ensures efficient use of compu-
ting resources. A master processor coordinates data transfer, distributes computational tasks, and syn-
chronizes results. While multi-threading enables faster computations within a single machine, multipro-
cessing improves scalability by leveraging multiple computers, though it introduces some communication 
overhead. 

 

Figure 5: Whenever the computer resource is available, we start to solve a new subproblem. When all subproblems 
are solved, the information is fed back to the Relaxed Master Problem (RMP). 

The efficiency gains increase as the problem size grows, although performance does not scale linearly 
with the number of computing resources. Simply adding more processors does not guarantee a propor-
tional reduction in solving time due to the increased communication demands. Nonetheless, this ap-
proach significantly enhances the feasibility of large-scale energy system planning, enabling the analysis 
of more complex and realistic scenarios. 
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Figure 5 provides a visual representation of the parallelization process, illustrating how subproblems are 
solved in parallel and how information flows back to the master problem. This figure clarifies the compu-
tational structure of the method and highlights how synchronized execution reduces delays. 

 

4.2.3 Problem and Model Description 

The energy system planning problem is formulated within the REORIENT model, which integrates invest-
ment and operational decisions for a European energy system under uncertainty. The objective is to de-
termine an optimal strategy for investment, abandonment, and retrofit planning while also considering 
operational scheduling to meet energy demand at minimum cost. 

The problem incorporates two layers of uncertainty: short-term uncertainty, which includes variability in 
renewable energy availability, hydropower production, and electricity demand, and long-term uncer-
tainty, which covers factors such as oil and gas prices, CO₂ emission regulations, and technological cost 
developments. These uncertainties are modelled using multi-horizon stochastic programming (MHSP), 
ensuring that both short-term and long-term variations are explicitly considered in decision-making. 

Investment decisions involve determining the capacity of various energy generation technologies. These 
include traditional thermal generators (coal, gas, nuclear, and biomass), generators with carbon capture 
and storage (CCS), renewable sources (wind, solar, wave, hydro, geothermal), energy storage technolo-
gies (hydropump storage, lithium-ion batteries), and hydrogen infrastructure (electrolyzers, hydrogen 
storage, and pipelines). Additionally, investments in electric transmission networks and clean energy 
hubs are considered. The capital and fixed operational costs for these technologies are assumed to be 
known. 

The retrofit planning aspect includes upgrading existing natural gas pipelines for hydrogen transport and 
repurposing offshore platforms for clean energy hubs. Additionally, abandonment decisions for mature 
fossil fuel fields are considered. The model determines both the capacity of new and retrofitted technol-
ogies and the optimal operation of the system, including the scheduling of generation, storage, and 
power flows between regions. The objective is to minimize the combined investment, operational, and 
environmental costs while ensuring compliance with emission targets. 

The REORIENT model maintains the standard assumptions and modelling strategies used in previous re-
search while it incorporates multi-timescale uncertainty more comprehensively. The geographical scope 
covers 27 regions across Europe, each of which can deploy 36 different technologies. The network in-
cludes 87 transmission lines, as well as existing and candidate hydrogen pipelines that may be retrofitted 
from natural gas infrastructure. 

The energy system planning problem formulated in this model captures the complexity of decision-mak-
ing under uncertainty. By integrating short-term fluctuations with long-term policy and market uncer-
tainties, it provides a structured framework for assessing investment strategies and ensuring a cost-ef-
fective and resilient transition to a low-carbon energy system. 

4.2.4 Case study and Computational Results 

The extended REORIENT model is applied to the integrated strategic planning of the European energy 
system [32]. The network topology is illustrated in Figure 6. The investment planning horizon extends to 
2050, with five-year planning steps to account for long-term infrastructure decisions and operational ad-
justments. 

The model and solution algorithm are implemented in Julia 1.8.2 [33], using JuMP [3] for mathematical 
programming and Gurobi 10.0 [34] as the solver. The computational experiments are performed on a 
high-performance computing cluster, where each node is equipped with a 2x 3.5 GHz 8-core Intel Xeon 
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Gold 6144 CPU and 384 GB of RAM, running CentOS Linux 7.9.2009. The largest problem instances con-
tain up to 55 million continuous variables, 1,876 binary variables, and 116 million constraints, demon-
strating the scalability of the proposed approach. 

 

Figure 6: Illustration of the considered European energy system. The considered system includes 27 regions (each region can 
deploy 36 technologies), 87 transmission lines, 7 existing natural gas pipelines that can be retrofitted for hydrogen transport 
(some are overlapped), and 87 candidate new hydrogen pipelines. 

The computational performance of the parallel stabilized Benders decomposition is evaluated by com-
paring three different implementations: 

1. Serial implementation (standard Benders decomposition) 
2. Multi-threaded implementation (parallel execution on a single computer) 
3. Distributed implementation (parallel execution across multiple computers) 

The problem instances used for performance evaluation are summarized in Error! Reference source not 
found., which lists the number of operational periods, short-term and long-term scenarios, and decision 
nodes for each case. The four cases differ in problem size, with the largest instance involving 985 opera-
tional periods, 4 short-term scenarios, and 8 long-term scenarios, resulting in 55 million continuous vari-
ables and 120 million constraints. 
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Table 1: Overview of the cases used in the computational study. 

The results of the study indicate that both multi-threaded and distributed implementations significantly 
outperform the serial implementation. Compared to the serial approach, the distributed implementation 
achieves a speedup of up to 7.5 times, while the multi-threaded implementation is up to 3.9 times faster. 
As the problem size increases, the advantages of parallel computation become more pronounced, high-
lighting the importance of scalability in large-scale energy system planning. 

To further investigate the efficiency of the distributed implementation, additional experiments are con-
ducted with an increased number of subproblems (105 subproblems). The results show that increasing 
the number of processors improves solving time, but the performance gain is not perfectly linear due to 
communication overhead. A comparison between three and six processors demonstrates that while ad-
ditional computational resources enhance performance, the efficiency gain diminishes as more proces-
sors are added. 

Overall, these results confirm that parallel stabilized Benders decomposition is a highly efficient solution 
method for large-scale stochastic optimization problems. The approach enables the simultaneous con-
sideration of multi-timescale uncertainty while maintaining computational tractability, making it well-
suited for strategic energy system planning at the European scale. 
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5. Exploring new frontiers to improve computational time in energy sys-
tems – Quantum computing 

As part of task 2.2, iDesignRES explored new frontiers and applications of quantum computing to energy 
system modelling. 

Quantum computing leverages the principles of superposition and entanglement to solve complex prob-
lems more efficiently than classical methods. Among quantum approaches, quantum annealing is partic-
ularly suited for optimization problems, as it seeks the minimum energy state of a Hamiltonian, which 
corresponds to the optimal solution of an objective function. 

A quantum annealer encodes an optimization problem into an Ising model or a Quadratic Unconstrained 
Binary Optimization (QUBO) formulation. The system is initialized in a well-defined quantum state and 
then evolves according to the adiabatic theorem, gradually transforming into a final state where the low-
est-energy configuration represents the optimal or near-optimal solution. This makes quantum annealing 
particularly effective for combinatorial optimization problems, where classical approaches struggle with 
exponential scaling. 

As an example, D-Wave’s quantum annealers are designed specifically for optimization tasks, employing 
superconducting qubits to implement these annealing processes. Hybrid solvers – such as D-Wave's 
LeapHybridCQMSolver - integrate classical preprocessing and postprocessing steps with quantum com-
putations, allowing them to tackle larger and more complex problem instances (i.e., mixed problems) 
than purely quantum approaches. However, their advantage over classical solvers remains problem-de-
pendent, with the best performance observed in cases closely related to the native Ising model structure. 

5.1 Unit Commitment Problem – An Energy System Application 

Unit commitment problems are critical in energy system optimization, involving the scheduling of gener-
ating units to minimize total operational costs over a given period. They are formulated as Mixed Integer 
Linear Problems (MILPs), consisting of minimizing a cost function while ensuring various constraints are 
met, such as demand satisfaction, logical conditions, capacity limits, and ramping limits. Generally, they 
entail both binary and continuous variables. Thus, D-Wave's LeapHybridSolver is suited for this problem, 
which has been tested on multiple problem scales. 

The largest analysed problem scale has 44544 variables, 42899 constraints, 48h time periods and 4 line-
arization segments. Initial tests using the default minimum runtime of 20 s fail to produce feasible solu-
tions. As seen in Figure 7, increasing the runtime to 150 s and 400 s leads to improvements, though the 
solutions remain suboptimal. The best solutions obtained are significantly worse than those produced by 
Gurobi, which finds near-optimal solutions within 180  
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Figure 7: Solution distribution from D-Wave’s LeapHybridCQM Solver from the full-scale unit commitment problem. The different 
cases are 6 runs for an increase run time of 150s and 2 runs for one of 400s. Each run supplies a sampleset with an average of 
100 solutions. 

To analyse how D-Wave performs with a downsized problem, it is solved in two new different instances, 

Reduced-1 and Reduced-2, which have a decreased number of time periods, from 48 h to 12 h and 2 h 

respectively (see Figure 8). Although D-Wave finds feasible solutions for Reduced-1, they differ by a factor 

of 10 from the optimal solution found by Gurobi. For the Reduced-2 instance, some feasible solutions are 

found with a gap of (approximately) 2.4%. However, while D-Wave takes on average 5s to find the optimal 

solution, Gurobi finds it in less than a second. 

Figure 8: Solution distribution from D-Wave’s LeapHybridCQM Solver from Reduced-1 problem on the left, and the Reduced-2 

problem on the right. Both distributions show the objective function values of 70 runs, with an average of 100 solutions per 

iteration. 

These results suggest that for mixed-integer linear programming (MILP), including the unit commitment 

problem, D-Wave’s solver fails to surpass classical solvers like Gurobi. Solution quality remains signifi-

cantly lower, and no computational advantage is observed. 
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5.2 Conclusions 

Quantum annealing is a promising approach for solving certain NP-hard and optimization problems, par-
ticularly those that align well with its mathematical structure. Continuous improvements in quantum 
hardware, such as the implementation of topologies like Zephyr or the development of fault-tolerant 
qubits, are expected to enhance the capabilities of quantum annealers. Advances in hybrid algorithms 
that better integrate classical and quantum computing resources will likely improve the performance and 
applicability of quantum annealing. 

While quantum annealing shows significant potential for QUBO problems, expanding its applicability to 
a wider range of optimization problems, including those with non-binary and non-quadratic constraints, 
remains a key area of research. Regular benchmarking and performance evaluations will be crucial to 
track progress and identify areas where quantum annealing can offer a computational advantage. 

Due to its current limitations in scalability, parameter optimization, and handling complex constraints, 
quantum annealing is not yet a universal solution. However, it has a promising future with ongoing ad-
vancements in hardware and algorithms expected to expand its capabilities and applicability. The field 
has grown enormously in recent years, and this trend is expected to continue, further enhancing the 
potential of quantum annealing to solve complex optimization problems. 
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6. Outreach and Dissemination Activities 

Here we summarize some selected highlights regarding dissemination activities as part of Task2.2 work 
output presented in international conferences, workshops, and scientific publications.  

6.1 Dissemination activities on Bender’s decomposition – Conferences and publications     

The development of the new method in benders decomposition was presented at the 25th Interna-
tional Symposium on Mathematical Programming (ISMP 20245) in Montreal. The ISMP features parallel 
sessions on optimization topics including nonlinear programming, global optimization, and machine 
learning applications. There, the results described in Chapter 4 were accepted for presentation under 
the title: 

- Integrated energy system planning under short-term and long-term uncertainty: Modelling and 
algorithms, presented by Hongyu Zhang (NTNU) 

This work was extended and developed in a scientific publication submitted to a top international jour-
nal under the title: 

- Modelling and analysis of multi-timescale uncertainty in energy system planning; co-authored 
by Hongyu Zhang, Erlend Heir, Asbjørn Nisi, Asgeir Tomasgard (NTNU) 

6.2 Quantum Computing Applications in Optimization – Workshop and publications 

A workshop about Quantum Computing Applications in Optimization was organized to bring together 
researchers and industry professionals to discuss the latest advancements and challenges in applying 
quantum computing to optimization problems with a focus on energy systems. The event attracted par-
ticipants from academia, research institutions, and companies, including Rystad Energy and IBM, as well 
as universities from Norway, Finland, Germany and Spain. 

The workshop covered such as gate-based quantum computing, quantum annealing, quantum inspired 
algorithms and challenges in energy modelling, exploring their potential to tackle complex optimization 
challenges. Through expert talks, research presentations, and interactive discussions, participants shared 
insights into recent technological developments, fostered collaboration between academia and industry, 
and identified key challenges and opportunities for future research. A particular focus was placed on 
quantum applications in the energy sector, highlighting computational challenges and emerging solu-
tions. 

The final session was dedicated to open collaboration opportunities, encouraging dialogue between par-
ticipants and paving the way for future joint research initiatives. The event fostered valuable discussions, 
strengthened professional networks, and highlighted the growing interest in quantum computing for 
solving real-world optimization problems. 

 

5 https://ismp2024.gerad.ca/schedule/TA 
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Figure 9: Workshop organized by NTNU together with iDesignRES. Overview of presentations, social media impact 
and showcasing the iDesignRES project. 

 
Moreover, in this workshop, the main results described in chapter 5 were presented. This work was ex-
tended and developed in a scientific publication published in a top international journal (Nature Scien-
tific’s Report) under the title: 

- Quantum annealing versus classical solvers: Applications, challenges and limitations for optimi-
sation problems, co-authored by Finley Alexander Quinton, Per Arne Sevle Myhr, Mostafa Ba-
rani, Pedro Crespo del Granado, Hongyu Zhang 
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7. Summary 

This deliverable summarizes the development within Task 2.2: Assembling multi-physics modules and 
components. It is considered as companion report to the software deliverable developed through two 
individual packages for the EnergyModelsX framework. The two packages are available on GitHub includ-
ing their documentation and individual examples.  

New generic sampling routines for the individual component models are introduced that can be utilized 
to incorporate data/process descriptions from detailed models. These sampling routines are described 
within Section 2. As the individual functions are generic, it is necessary to provide a specific technology 
description for the EnergyModelsX framework as outlined in the code for the power generation from 
wind farms. 

The EnergyModelsX framework is furthermore extended with a receding (rolling) horizon framework for 
operational stress testing of an energy system as described in Section 4. The receding horizon framework 
allows for differing horizon and future value descriptions. It is in general compatible to EnergyModelsX 
models although it requires potentially minor modifications to the input data set. The reduction in com-
putational burden is dependent on the complexity of the problem, the chosen length of the optimization 
horizon as well as the complete horizon. While it is possible for simple models that the additional over-
head for creating the individual models outweighs the benefits offered by smaller optimization problems, 
this is reversed for complex models. 

Although a receding horizon approach can reduce the computational burden through splitting the com-
plete horizon in several smaller horizons and solving these sequentially, it is still necessary to consider 
approaches for improving the speed of the optimization. To this end, implemented features for model 
constructions (Section 4.1), methods for improving the computation speed in solving the optimization 
problem (Section 4.2) as well as an outlook for potential applications of quantum computing (Section 0) 
are presented to allow the reader to obtain an overview of the current and future potential for reducing 
the computational burden of solving energy system models. 

The developed EMX packages will be subsequently utilized within the individual iDesignRES case studies 
in WP3, specifically in the upcoming case study focusing on the North Sea region in Task 3.2. It is planned 
to present the framework, including a smaller case study to highlight its benefits, at the Smart Energy 
Systems Conference in September 2025.  
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